CS 162, Fall 1991 Final Professor A. Smith

The exam is closed book. Any question for which you give no answer at all will receive 20% partial credit.

Problem #1

One thing that adds security to the Unix password system is "salt." Salt consists of two randomly generated characters, different for each user, which are stored in the /etc/passwd file for each file. The Salt is used to determine which of 4096 variations of the password encryption algorithm are used to encrypt a given password. What is the advantage of using "salt?". Explain. (15)

Problem #2

Explain what an "intentions list" is, and how and why it is used. (15)

Problem #3

When you log into Unix, it tells you when youlast logged on. Why? (10)

Problem #4

Define and explain what a stack algorithm is. Why is it good? If two algorithms are compared and one is not a stack algorithm and the other is, will one always give better (fewer page faults) results? Why and why not? (17)

Problem #5

Explain the purpose of a token in a ring network Why is there only one token? (13)

Problem #6

What are the functions that "open" and "close" perform? (16)

Problem #7

Describe and explain all of the problems that could occur if users could write directories directly. Be precise and specific.

Problem # 8

What is a polyalphabetic cipher? How would you go about breaking it? (10)

Problem #9

Explain the only perfect method of encryption, and why it is perfect. What do we mean by perfect? (11)

Problem # 10

CS 162, Final, Fall 1991, Online Exam

True/False questions (27):
a: The "chmod" command in Unix is used to alter capabilities
b: Files in Unix are contiguously allocated
c. Deleting a directory deletes all files within that directory
d. When a file is opened, its descriptor is kept in main memory.
e. Internally the OS refers to files by name
f. Directories are stored on disk just like regular files
g. If A has a symbolic link to B's file, (these are the only two links to the file) and B removes its hard link from the file, the link count of the file is decremented and the file still exists, but B no longer has access to it.
h. A Unix file descriptor must allocate at least 13 pointers, even if the file it points to has only 4 blocks.
i. Unix password files are world-readable
Problem # 11
We discussed two ways of comparing paging algorithms: A curve of space vs. faults, and space-time product. Define each, and explain which is better and why. (15)
Problem # 12
Explain (all of) the advantages and disadvantages of disk caching. (15)
Problem # 13
(a) What is the approximate length of time required for a full rotation on most hard disks? (6)
(b) Suppose that youhave a new mythical disk called the dervish. The rotation time is as in part a. The seek

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

time is 10 microsections/cylinder, and there are 100 cylinders. I claim that disk scheduling algorithms such as SCAN and SSTF are no longer very good. Why? What would be a good scheduling algorithm for the

dervish disk? (16)

Problem #2 2