
CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 1/12

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2017 Ion Stoica

First Midterm Exam
February 27, 2017

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 18

2 20

3 22

4 14

5 16

6 10

TOTAL 100

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 2/12

P1 (18 points total) True/False and Why? CIRCLE YOUR ANSWER. For each
question: 1 point for true/false correct, 2 point for explanation. An explanation cannot
exceed 2 sentences.

a) You can use a socket to communicate between two processes on the same
machine.

TRUE FALSE
Why?

b) If you wanted to close one thread in a multithreaded process, the best choice
would be to call exit(0).

TRUE FALSE
Why?

c) Incrementing an integer value can always be performed atomically.

TRUE FALSE
Why?

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 3/12

d) Locks can be implemented by leveraging interrupts on single processor computers.
TRUE FALSE

Why?

e) Accessing a variable stored in a thread’s individual stack is always thread-safe.
TRUE FALSE

Why?

f) Switching the order of two P() semaphore primitives can lead to deadlock (recall
that sem.P() decrements semaphore value, “sem”, and blocks if it is 0).

TRUE FALSE
Why?

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 4/12

P2 (20 points) C Programming and Sockets: The code below implements a trivial echo
server that reads arbitrary data into reqbuf from a client on consockfd socket descriptor,
and then sends this data back to the client on the same socket descriptor (we ignore
disconnections and other socket errors).

1	void	server(int	consockfd)	{
2			char	reqbuf[MAXREQ];
3			int	n;
4			while	(1)	{																			
5						n	=	read(consockfd,	reqbuf,	MAXREQ);	/*	Recv	*/
6						n	=	write(consockfd,	reqbuf,	strlen(reqbuf));	/*	echo*/
7			}
8	}

Please recall that the last argument of read(), MAXREQ, is the maximum number of
bytes it can read (usually the size of reqbuf), and it returns the number of bytes it reads,
n, which can be smaller than MAXREQ.

Please answer the following questions. Answering a question may require you to add,
delete, or modify the code above. If that’s the case, please specify the # of the line being
modified or deleted. If you need to add code, please specify the #’s of the lines between
which the code needs to be added (e.g., “add code between lines #4 and #5”).

a) (6 points) Assume the client always sends strings, i.e., ‘\0’ terminated sequence
of characters. What can go wrong in the previous code? Provide a fix by
specifying the changes to the above code.

b) (6 points) Assume the client sends a buffer that can contain ‘\0’ characters. What
can go wrong in the previous code? Provide a fix by specifying the changes to the
above code.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 5/12

c) (8 points) Assume the server needs to exit when receiving the string “quit”. Re-
write the server() code to implement this functionality.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 6/12

P3	(22	points)	Producer/Consumer:	Consider	the	following	code	that	implements	
a	synchronized	unbounded	queue	using	monitors	that	we	went	over	in	lecture:	

1.		Lock	lock;
2.		Condition	dataready;
3.		Queue	queue;
	
4.		AddToQueue(item)	{
5.				lock.Acquire();		//	Get	Lock
6.				queue.enqueue(item);		//	Add	item
7.				dataready.signal();		//	Signal	any	waiters
8.				lock.Release();		//	Release	Lock
9.		}	

10.	RemoveFromQueue()	{
11.			lock.Acquire();		//	Get	Lock
12.			while	(queue.isEmpty())	{
13.					dataready.wait(&lock);	//	If	nothing,	sleep
14.			}
15.			item	=	queue.dequeue();		//	Get	next	item
16.			lock.Release();		//	Release	Lock
17.			return(item);
18.	}

Please answer the following questions.

a) (6 points) Assume that we have multiple producers running AddToQueue() and
multiple consumers running RemoveFromQueue(). Do you need to make any
changes to the code? If yes, specify the changes in the above code by indicating
the line you need to modify, the line #’s between which you need to add new
code, or the line # you need to delete. If not, use no more than two sentences to
explain why.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 7/12

b) (10 points) Change the code to implement a bounded queue, i.e., make sure that
the producer cannot write when the queue is full. Add your changes in the empty
space of the code below.

Lock	lock;
Condition	dataready;
Queue	queue;	
	
	

	
AddToQueue(item)	{
		lock.Acquire();		//	Get	Lock	
	
	
	
	
	
	

		queue.enqueue(item);		//	Add	item
		dataready.signal();		//	Signal	any	waiters
		lock.Release();		//	Release	Lock
}

RemoveFromQueue()	{
		lock.Acquire();		//	Get	Lock
		while	(queue.isEmpty())	{
				dataready.wait(&lock);	//	If	nothing,	sleep
		}
		item	=	queue.dequeue();		//	Get	next	item	
	
	
	
	

		lock.Release();		//	Release	Lock
		return(item);
}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 8/12

c) (6 points) Implement a new function, ReadFromQueue(), which uses the
function “item	=	queue.read()” to read an item from the queue without
removing it.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 9/12

P4 (14 points total) CPU Scheduling: Consider the following single-threaded processes,
and their arrival times, CPU bursts and their priorities (a process with a higher priority
number has priority over a process with lower priority number):

Process CPU burst Arrives Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Please note:

• Priority scheduler is preemptive.
• Newly arrived processes are scheduled last for RR. When the RR quanta expires,

the currently running thread is added at the end of to the ready list before any
newly arriving threads.

• Break ties via priority in Shortest Remaining Time First (SRTF).
• If a process arrives at time x, they are ready to run at the beginning of time x.
• Ignore context switching overhead.
• The quanta for RR is 1 unit of time.
• Total turnaround time is the time a process takes to complete after it arrives.

Given the above information please fill in the following table.

Time FIFO/FCFS Round Robin SRTF Priority

1

2

3

4

5

6

7

8

9

10

Total Turnaround Time

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 10/12

P5 (16 points) Synchronization: Next Saturday is the international day of Poker. As the
owner of the largest poker website worldwide you expect a large number of games being
played (and finishing) at any point in time in your website. Consider that players can play
more than one game at a time and any two players can play against each other in more
than one game simultaneously. For simplicity, we consider each game has exactly two
players.

The backend system of your poker website contains the following multi-threaded code.

queue					games_finished_queue;
lock_t				games_finished_lock;
semaphore	games_to_process_sem;

typedef	struct	Game	{
	
}	Game;

typedef	struct	Player	{
				lock_t	lock;
				uint64_t	n_chips;
				uint64_t	unique_id;
}	Player;

void	finish_game(Game*	game)	{
					lock_acquire(&games_finished_lock);
					enqueue(&games_finished_queue,	game);
					lock_release(&games_finished_lock);
					sema_up(&games_to_process_sem);
}

void	process_finished_games()	{
					lock_acquire(&games_finished_lock);
					sema_down(&games_to_process_sem);
					Game*	g	=	pop_queue_front(&games_finished_queue);
					move_chips(g->player1,	g->player2,	g->n_chips);
					lock_release(&games_finished_lock);
}

void	move_chips(Player*	player1,	Player*	player2,	uint64_t	n_chips)	{
				lock_acquire(&player1->lock);
				lock_acquire(&player2->lock);
				
				player1->n_chips	-=	n_chips;
				player2->n_chips	+=	n_chips;

				lock_release(&player2->lock);
				lock_release(&player1->lock);
}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 11/12

a) (6 points) Identify two places in the code where deadlock can occur. If deadlock
occurs, use no more than two sentences to explain why it occurs.

b) (10 points) Use the space bellow to change process_finished_games() and	

move_chips () (or copy if correct) to ensure no deadlocks can occur. Explain
succinctly why no deadlock can occur with the newly modified code. Note: a
single lock at the beginning and end of move_chips is not an accepted solution.

void	process_finished_games()	{	
	
	
	
	

					Game*	g	=	pop_queue_front(games_finished_queue);
					move_chips(g->player1,	g->player2,	g->n_chips);	
	
	
	
	
}

void	move_chips(Player*	player1,	Player*	player2,	uint64_t	n_chips)	{
	
	
	
	
				player1->n_chips	-=	n_chips;
				player2->n_chips	+=	n_chips;

	
	
	
}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 12/12

P6. (10 points) Syscalls: Please answer the following questions.

a) (4 points) Syscall dispatch. Suppose there is a function “foo()” in kernel
memory at address 0xA000 that requires full privileges to run. The kernel would
like to allow userspace threads to use this function. How can the user thread cause
foo() to run? For now, we assume that foo() takes no arguments and has no
return value. (HINT: x86 provides an instruction "INT	N" that sends interrupt #N
to the CPU where N is between 0-255.)

b) (4 points) Syscall execution. Suppose instead of just one function, we wanted to
support an arbitrary number of system calls (potentially even thousands). Would
your approach in part 1 still work? If not, what changes would you need to make?

c) (3 points) Pintos Kernel Stack. In Pintos, would foo() use the user’s stack? If
not, where does it keep its stack?

