CS 70, Fall 2000
 Midterm 2
 Papadimtriou/Russell/Sinclair

Problem \#1

(20 pts.) Extended GCD

For each of the following equations, find a pair of integers x and y that satisfies that equation or prove that no such pair exists.
[Note: these are not simultaneous equations.]
(a) (5 pts) $13 x+21 y=1$
(b) (5 pts) $13 x+21 y=2$
(c) $(5 \mathrm{pts}) 33 x+21 y=1$
(d) $(5 \mathrm{pts}) 33 x+21 y=3$

Problem \#2

($20+5$ pts.) Perfect Squares
Let p be a prime greater than 2 . An integer y is called a perfect square modulo p if $y=x^{2} \bmod p$ for some integer $x ; x$ is called a square root of y modulo p.
(a) (6 pts) Which among the integers $0,1, \ldots, 10$ are perfect squares modulo 11 ?
(b) (8 pts) Prove rigorously that each integer y, where $0<y<p$, has either zero or two square roots modulo p.
[Hint: Suppose w and x are square roots of y; what can you deduce about the relationship between them?]
(c) (6 pts) Using the result in (b), prove that there are exactly $(p+1) / 2$ perfect squares modulo p.
(d) (5 pts, extra credit) Prove that there are at least $p / 3$ perfect cubes modulo p.

Problem \#3

(20 pts.) RSA
Your public key is $p^{*} q=33$, with an exponent e that is either 5 or 7 .
(a) (4 pts) Which of 5 and 7 should be your public exponent, e ? Why?
(b) (4 pts) What is your private key?
(c) (6 pts) How would you encrypt the message $m=2$?
(d) (6 pts) How would you sign the same message?

Problem \#4

(20 pts.) Polynomials
(a) (5 pts) A function $f(x)$ on $G F p$ returns a value in $G F p$ given any input x, where x is an element of $G F p$. Two functions f and g are distinct if there is some value x for which $f(x) \neq \mathrm{g}(x)$. How many distinct functions are there on $G F p$?
(b) (5 pts) Any polynomial on $G F p$ can be written as $q(x)=(A p-1) * x^{\wedge}(p-1)+(A p-2) * x^{\wedge}(p-2)+\ldots+A 0$
where the coefficients $A p-1, \ldots, A 0$ must also be in $G F p$. Two such polynomials are apparently distinct if they have different coefficients. How many apparently distinct polynomials are there on $G F p$?
(c) (5 pts) Prove that if two polynomials $\mathrm{q}(x)$ and $\mathrm{r}(x)$ on GFp are apparently distinct then they are distinct functions.
(d) (5 pts) Hence show that every function on $G F p$ is also a polynomial on $G F p$. (Note: Lagrange interpolation is a constructive proof of this fact, but we are not asking for a constructive proof in this problem.)

Problem \#5

(20+5 pts.) Probability spaces

Each of the 50 states has two US senators. A committee of 20 senators is chosen uniformly at random from among all 100 senators. Answer the following questions, justifying each answer carefully:
(a) (6 pts) What is the sample space, and what is the probability of each sample point? [Your answer may contain binomial coefficients of the form $\binom{x}{y}$.]
(b) (6 pts) Let $C C$ by the event that the committee includes both of the senators from California. What is the probability of $C C$?
[Your answer should be expressed as a rational number in reduced form.]
(c) (6 pts) Let W be the event that the committee contains at least one senator from Wyoming. What is the conditional probability of $C C$ given W ?
[Your answer should be expressed as a rational number in reduced form.]
(d) (2 pts) Are $C C$ and W independent events? Remember to justify your answer.
(e) (5 pts , extra credit) What is the probability that at least one state has two members in the committee?
[Your answer may contain binomial coefficients of the form $\binom{x}{y}$.]

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

