
CS 88 Computational Structures in Data Science
Fall 2019 Midterm

INSTRUCTIONS

• You have 2 hours to complete the exam. Do NOT open the exam until you are instructed to do so!

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official CS 88 midterm 1 study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use example functions defined on your study guide unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.
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1. (12 points) Evaluators Gotta Evaluate...

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If evaluation would run forever, write “Forever”. To display a
function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

def example ():

print(’Do Nothing ’)

return None

x = 8

y = 88

z = ’python ’

def w(d):

x = 0

while x > 0:

return None

return d + 1

def fun(f, x, y):

f = min

return f(x,y)

Expression Interactive Output
x * y 704

example()
Do Nothing
None

(2 pt) x or y

(2 pt) (x and y) * (x/y)

(2 pt) x * (x > y)

(2 pt) ’Py’ + z

(2 pt) fun(max, 61, 88)

(2 pt)
lam = lambda x: lambda y: w(x)

lam(2)(3)
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2. (8 points) Save the Environment!

Fill in the environment diagram that results from executing the
code on the right until the entire program is finished, an error
occurs, or all frames are filled. We have started the environment
diagram for you.
A complete answer will:

• Add all missing names and parent annotations to all local
frames.

• Add all missing values created or referenced during execu-
tion.

• Show the return value for each local frame.

Global frame base

base = "ball" 
baddr = lambda base : lambda ball: base + ball 
mailer = baddr("mailto:") 
def ball(baddr, edu): 
addr = baddr + "@" + edu 

  print(baddr + " got mail") 
  return mailer(addr) 
ball(base, "berkeley.edu")

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

func λ(base) <line 2> [parent=Global]

“ball”

Global frame base

base = "ball" 
baddr = lambda base : lambda ball: base + ball 
mailer = baddr("mailto:") 
def ball(baddr, edu): 
addr = baddr + "@" + edu 

  print(baddr + " got mail") 
  return mailer(addr) 
ball(base, "berkeley.edu")

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

func λ(base) <line 2> [parent=Global]

“ball”
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3. (10 points) Happy, Happy Halloween!

It’s almost Halloween! As college students, we know that trick-or-treating is all about maximizing the value of
our candy haul by only filling our bags to capacity with the most valuable candy.

Fill in the function trick or treat that will return a list of the names of the candies that maximizes the value
of the candy we collect in our bag. For this problem, the ’value’ of a candy is the length of the name of the
candy. We only put one of each candy in our bag, and we cannot fill our bag beyond its capacity. (A bag with
a value of 9 would be full if it contained a ”twix” (4) and ”MM’s” (5)). We can have any number of candies,
but we can’t go beyond the maximum value. (You can think of this like a bag that has maximum weight it can
hold before breaking.) We will maximize our haul by always taking the most valuable candy first.

You may use the Python max function, which takes in a list and returns the largest value in the list. You
may also use the Python remove function, which removes an element from a list with the following syntax:
list.remove(element).

def trick_or_treat(candies , cap):

"""

candies: a list of strings with the names of the candies

cap: a number that is the capacity of the bag

>>> trick_or_treat ([’snickers ’, ’twix ’], 5)

[’twix ’]

>>> trick_or_treat ([’kit kat ’, ’dots ’, ’reeses ’], 14)

[’kit kat ’, ’reeses ’]

"""

total = 0

seen = 0

result_bag = _______________

copy_candies = candies.copy()

while cap > total and seen < len(candies ):

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

return result_bag
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4. (8 points) Don’t Tell A Fib!

Remember the Fibonacci sequence? Great, now let’s change it up. Implement a recursive function that takes
in a number n, and returns the nth element of a sequence where elements at an even index are the sum of the
previous two elements, and elements at an odd index are the product of the previous two elements. The first
two elements of the sequence are 0 and 1.

The sequence looks something like this:

0, 1, 1, 1, 2, 2, 4, 8, 12, 96, 108. . .

For example: alt fib(9) = 96 = 12 ∗ 8 and (alt fib(10) = 108 = 98 + 12.

def alt_fib(n):

"""

>>> alt_fib (10)

108

>>> alt_fib (0)

0

>>> alt_fib (1)

1

"""

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Count the calls: How many calls of alt fib are made when we execute alt fib(6)? (The initial call of
alt fib(6) counts as 1 call.)

———————————–

Extra Credit (1 point): What happens when you call alt fib(-2)? Use the code from your solution. (There
are multiple possible correct answers, depending upon your previous answer.)This is extra credit; come back to
this only if you have time!

—————————————————————————————————————————————————

—————————————————————————————————————————————————
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5. (20 points) Dinner Time!

It’s dinner time! We’re writing a function to check if we’re having a complete meal.

Unscramble the following lines to complete the body of isCompleteMeal. You will use each line
exactly once.

Given a list of 3 elements containing food items, return True if the 3 food items make a complete meal, meaning
that it has one item from each category of appetizer, main, and dessert in no particular order. Return False
if the meal is incomplete.

has_app _______________

has_app _______________

return _______________ and _______________ and _______________

has_dessert _______________

has_dessert _______________

elif _______________:

elif _______________:

for _______________:

if _______________:

has_main _______________

has_main _______________

def isCompleteMeal(apps , mains , desserts , meal):

"""

>>> appetizer = [" salad", "bread", "soup"]

>>> main = [" pasta", "noodles", "steak"]

>>> dessert = ["cake", "pie", "ice cream"]

>>> meal = [" bread", "salad", "ice cream"]

>>> isCompleteMeal(appetizer , main , dessert , meal)

False

>>> meal = [" bread", "steak", "ice cream"]

>>> isCompleteMeal(appetizer , main , dessert , meal)

True

"""

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------
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Use your isCompleteMeal function to fill in numCompleteMeals. You can get full points for this part even
if your previous function isn’t perfect. However, in order to get full credit, your solution must fit in one line of
Python.

If you can’t figure out a one line solution, but have a correct solution, you’ll still get some points! Oh, and if
you write big, don’t worry about that. “One line” means one return statement.

def numCompleteMeals(app , main , des , food):

"""

Given a list of 3 element lists containing food items ,

return the number of lists that make a complete meal ,

meaning that the list has one item from each category of

appetizer , main , and dessert.

>>> appetizer = [" salad", "bread", "soup"]

>>> main = [" pasta", "noodles", "steak"]

>>> dessert = ["cake", "pie", "ice cream"]

>>> food = [

[" bread", "salad", "ice cream"],

[" pasta", "pie","salad"],

[" steak", "soup", "cake"], ["cake", "pie", "ice cream"]

]

>>> numCompleteMeals(appetizer , main , dessert , food)

2

"""

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------



8

6. (8 points) Time To Get Your Game On!

Long before NBA 2K came out, there was a much more primitive version of the video game, called NBA 1K.
They stored NBA players’ information in lists, and people who played the game would draft a team of these
players. A team’s score would be the sum of all individual player scores, and a player score would be the sum
of points, rebounds, and assists multiplied by the team skill R© factor of the team they play for.

Fill in the functions below to calculate a team’s score. Most of these functions can be written in 1 line. You
will get credit for using a function correctly even if your implementation is not complete.

# Use the following code as a guide in your functions.

# You will not use any of these variables directly.

teams = [ [team1_name , team1_skill], [team2_name , team2_skill], ]

teams = [ [’Golden State ’, 2.0], [’Los Angeles Lakers ’, 1.5] ]

player = [name , team_name , points , rebounds , assists]

players = [

[’Stephen Curry’, ’Golden State ’, 40, 10, 20],

[’LeBron James’, ’Los Angeles Lakers ’, 20, 10, 5]

]

def NBA1k_score(team_name , teams):

def get_team_skill(team_name ):

"""

>>> teams = [[’Golden State ’, 2.0], [’Los Angeles Lakers ’, 1.5]]

>>> get_team_skill(’Golden State ’)

2.0

"""

return ____________________________________________________________

def calculate_player_score(player ):

"""

>>> calculate_player_score ([’Stephen Curry ’, ’Golden State ’, 40, 10, 20])

140

"""

return ____________________________________________________________

return calculate_player_score

def calculate_teams_score(teams , players ):

"""

>>> players = [[’Stephen Curry ’, ’Golden State ’, 40, 10, 20],

[’LeBron James ’, ’Los Angeles Lakers ’, 20, 10, 10]]

>>> teams = [[’Golden State ’, 2.0], [’Los Angeles Lakers ’, 1.5]]

>>> calculate_teams_score(teams , players)

200

# Steph gets (40 + 10 + 20) * 2 points and

# LeBron gets (20 + 10 + 10) * 1.5 points = 140 + 60 = 200

"""

player_score_calculator = _________________________________

return _________________________________________________________________
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7. (8 points) Lists, and Lists, and Lists, Oh My!

Given a list of lists of variable length that contains numbers, have flatten list return a list of just those
numbers maintaining the same order that they were in. Fill in your solution below. You may not need all lines.

def flatten_list(lst):

"""

>>> flatten_list ([[1, 2, 3], [4, 5], [6, 7, 8], [9]])

[1, 2, 3, 4, 5, 6, 7, 8, 9]

"""

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Extra Credit (2 points): Our function so far only works with 2-Dimensional lists (one level of nesting).
Describe in two sentences (or so) how you would adapt this to handle an infinite level of nesting. This is extra
credit; come back to this only if you have time!

————————————————————————————————————————————————-

————————————————————————————————————————————————-

————————————————————————————————————————————————-


