University of California College of Engineering Department of Electrical Engineering and Computer Science

Jan M. Rabaey

TuTh11:00-12:30pm

EECS 141: SPRING 04—MIDTERM 1

NAME	Last	First
SID		
		<u></u>
		Problem 1 (on 11):
		Problem 2 (on 12):
		Problem 3 (on 9):
		Total
		1

PROBLEM 1: MOSFET Devices (11 points)

Two MOSFETs fabricated in a long channel process are tested to determine their I/V characteristics. Both devices have $W/L = 2.4 \mu m/1.2 \mu m$. Measured drain currents for different values of VGS and VDS are as follows (VSB = 0 in all cases):

Condition:	I _D - MOSFET A	I _D - MOSFET B
VGS = 0V, VDS = 0V	0A	0A
VGS = -1V, $VDS = -2V$	20μΑ	0A
VGS = 1V, VDS = 1V	0A	45μΑ
VGS = 1V, VDS = 0.02V	0A	4μΑ
VGS = -2V, VDS = -2V	200μΑ	0A

a. (6 points) Determine the device parameters to complete the following table. Assume λ =0 for both devices.

Parameter:	MOSFET A	MOSFET B
NMOS or PMOS?		
VT0		
k'		

b. (5 points) This fabrication process is now used to make the inverter shown below. On the following graph, sketch the approximate response at V_{OUT} for a rising input step until the transient settles. You may neglect the intrinsic transistor capacitances.

Indicate the region of operation of the two transistors as the transient progresses. **Determine precisely the times at which any changes in region of operation occur, and indicate those times on the chart.**

Problem 2: Propagation delay and energy consumption (12 points)

Consider the following circuit. Both PMOS transistor M_1 and NMOS transistor M_2 have the same size with W=0.36 μ m and L=0.24 μ m. $C_{L1} = C_{L2} = 10$ pF. $V_{DD} = 2.5$ V. Use the transistor parameters, defined in Table 3.2 of the textbook. However, you may assume that both the body-effect coefficient γ and the channel length modulation factor λ equal 0.

Table 3.2 Parameters for manual model of generic 0.25 μ m CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

a. (2 points) Assume that Vout is initially at 0. V_{in} now experiences a sharp rise from 0 to V_{DD} . Determine the final voltage at V_{out} after all transients have settled.

$$V_{out}(t=\infty) =$$

b.	. (2 points) Determine the propagation delay when V_{in} makes a low-to-high transition as described in part a. You can neglect the transistor capacitances of and M_2 because the load capacitances C_{L1} and C_{L2} are orders of magnitude lar				
	$t_p =$				
c.	(2 points) Determine the propagation delay when Vin transitions from Vdd to 0. Assume the same assumptions as in part b.				
	$t_p =$				
d.	(4 points) Determine E_{LH} (the energy dissipated in the transistors when V_{in} makes a low-to-high transition) and E_{HL} (the energy dissipated in the transistors when V_{in} makes a high-to-low transition).				
	$E_{LH} =$				
	E_{HL} =				

fro lo	om V_{in} to V_{out} .	e sentence expla Is there a limit to the propagation do	using this me	thod? If the ar	iswer is yes,	give the

Problem 3: Voltage Transfer Characteristic (9 points)

Consider the diode circuit shown below. The I-V characteristic of the diodes is given by the chart on the right side.

a. (2 point) Determine the value of Vout for Vin = 0V.

$$V_{out}(V_{in} = 0V) =$$

b. (2 point) What is the value of Vout when Vin = 2V.

c. (2 points) Draw the complete voltage transfer characteristic of the gate (for V_{in} going from 0 to 2V).

d. (1 points) Revisit question (a), assuming now that the gate has a fanout of one identical gate.

$$V_{out}(V_{in} = 0V) =$$

e. (2 points) Revisit question (b), assuming that the gate has a fanout of one identical gate.