Name: Login: csB1c-____

AN SWERS
CS61C, Spring 2011

Final Examination

Please read the following CAREFULLY:

The use of elecironic devices is not permitted on this exam.
One (1) page of notes, front and back, is permitted on this exam, not counting the MIPS
green card, which will be provided for you.
You will have 3 hours (180 minutes) to complete this exam.
Looking at another student’s exam, talking about the exam during the exam period, or
talking about the exam after the exam period but before all CS61C students have taken
the exam, is prohibited.

¢ Violafions of the above will be academic dishonesty. Violators will be dealt with harshly.
You do not want to find out what “harshly” means. Please don't make us inform you.

e You should write your name and login on every page of this exam, so that we may
associate detached pages with your exam.

Please read, fill out, and sign the following:

I, , have read the preceding points, and understand them fully.

Name:

Problem (pis) Points Received
SID:

1(10)
Login: csBtc- : 2 (10)
TA/Section: 3(10)

4 (8)
Signature: 58)

6 (16)

7 (14)

8 (14)

Total (90)

Name: Login: cs61c-____

1. True or False
Directions: Circle the correct answer.

a. (True Linear strong scaling is easier to obtain than linear weak scaling as

the number of processors increases.

b. False) An algorithm that performs 2 floating point operations on each element
ofa~10

0000000 integer array will most likely show performance that is limited by
memory bandwidth on one of our lab computers.

c. (True Cache blocking increases peak performance by increasing the amount
of data rewse-in-eache. . '

d. (True s the problem size increases, thread creation overhead becomes an
ever-greater-problem if an algorithm uses a constant number of threads.

Uil

e. (True ou notice that your algorithm obtains better speedup when you
switch from@ouble to single precision arithmetic than from the addition of SSE intrinsics.
This implies that the algorithm is bound by the machine’s floating point capability.

i

f. {True ?o ensure correctness, a compiler must take into account dynamic
multiple instruction issue.

9. @ False) On MIPS, ekecuting an lw instruction once can require two page faults
(assuming proper alignment). ‘

h. (True n MIPS, modifying $s0 in a function without saving the caller's value
e ameX

4

will caus ception.
i. (True ' MIPS exception handier follows the same célling convention as
ordinary MIPSfunctions.

. False) The compulsory cache miss rate can be reduced by changing cache
nararieters (e.g. associativity, block size, cache size).

Name: | Login: csB1c-____
2. OpenMP can set you free....

Consider the following OpenMP snippet:

int values[le8eee];
#pragma omp parallel

{
int i = omp_get_thread_num(};
int n = omp_get_num_threads{};
For (; i < 100000; i += n) {
values[i] = 1i;
#pragma omp barrier
}
}

#pragma omp barrier is a synchronization construct that causes a thread reaching it to continue
execution only after all other threads have reached the barrier.

. Suppose each core has a single level of non-shared, write-back, write-allocate, direct-mapped

32 KB data cache with 84-byte cache blocks. Assume data cache accesses other than those 1o
the 'values' array are negligible and that all data caches are initially empty. Assume ints are 32
bits. Assume there are as many cores as threads. '

a. If the snippet is run with one thread, how many data cache misses for the values array

will there be? (0 N O | | CD\ P+S)

b. If the snippet is run with two threads (each allocated a separate core), what is the
maximum number of data cache misses for the values array? '

| OO ©c0 (3eh) 2@

c. In five words or less, name the phenomenon that the difference or lack of difference
between your answer to (a) and (b} illustrate.

) \L&se S\f\&(tbajh l “f‘“ﬁ 5 ’
or i haladetiun Cl (Dh)

d. Using just two threads, if we remove the barrier, cou/d the number of data cache misses
for accesses to the values array decrease by more than a factor of 2 from your answer in

Name: Login: csB1¢c-___

3. To stall, or not to stall....

Suppose to add support for some complex arithmetic instructions, a 5-stage MIPS pipeline is
modified into a 8-stage MIPS pipeline by splitting the execute stage into two execute stages.
Assume in this 6-stage pipeline, the result of the ALU is not available until the second execute
stage, but the ALU takes its inputs in the first execute stage. (Assume the ALU is internally
pipelined so this extra stage does not introduce any structural hazards.)

- Assume we implement all forwarding paths to avoid hazards. For each the following assembly
snippets (a-f), determine whether a stall is needed between the two instructions with a standard
S-stage MIPS pipeline and with this hypothetical 6-stage pipefine. (Circle a/f that apply.)

a. addu $t0, $t1, $t2
subu $t1, $i2, $13

five-stage pipeline stalls six-stage pipeline stalls feither stalls |

b. addu $t0, $t1, $t2
' subu $t3, $10, $t4

five-stage pipeline stalls ~ six-stage pipeline stalls neither stalls

lw $t0, O($t1)
sw $t0, 0($t2) .

five-stage pipeline stalis six-stage pipeline stails neither stalls)

13

o

addu $t0, $t1, $t2
sw $t0, O($t3)

five-stage pipeline stalls six-stage pipeline stalls neither stalls

fw $10, 0($t1)
addu $t2, $t0, 5t1

five-stage pipeling s six-stage pipeline stafls | neither stalls

f. addu $t0, $t1. $t2
beq $t3, $zero, Label

ﬁve—sta'ge pipeline stalls six-stage pipeline stalls (neither stalls :

o

Name: Login; cs6ic-__

g. Wirite a C expression to determine when a 5-stage MIPS pipeline must stall between
a 'lw' and a following "addiu’ instruction. Use “L.rs”, “L.rt", “L.immediate”, and so onto
represent the fields of the Iw instruction and “A.rs”, “A.rt”, and so on to represent the
fields of the addiu instruction. You do not need to compare the opcodes.

[et == Noes AL A rs =0

2, ‘o‘&5o
_-—-\ Qf\r @ OMﬂiﬂH’,‘iMﬁ’) ‘%f/rDCl/\,evk

Name:

Login: csbtc-__

4. Reality Check
To make things simple, let's assume that the data word is just 4 bits wide.

2ok

D\(JJB

| Pt

2P+S D

What is the minimum number of extra redundant bits that you need to detect a single bit
error for a 4-bit data word?

i. None
1

il. 2

iv. 3

v. 4

What is the minimum number of extra redundant bits that you need to correct a single bit
error for a 4-bit data word?

i. None

i. 1

iii. 2

b 3
v. 4

The following bit pattern includes Hamming SEC/DED (single érror correction, double
error detection) using even parity to calculate the correcting/detecting code.

Bit number: 12345678

Data: 11001110

i. @ NO) Does it have a bit error?

ii. Hso, which bit has the error? Lefimost bit is 1, rightmost bit is 8.
x 1

[DY BN B I
(o> I &y RN N OV I \ V]

m B

Name: Login: cs61c-___

5. NAND, NAND, NAND, ...
a. Fill in the truth table for the following circuit:

A
. o : o 'DO——Xl

o

A B X1 X2 ‘
0 0 [|

0 1 I @

1 0 Q) |

1 K \ e

b. Draw in another 2-input NAND gate and wire it up to make a circuit which satisfies the
following truth table: (Note: Your solution should only have four 2-input NAND gates,

otherwise you get no points.)

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

¢. Which of the following gates has the identical functionality of the above circuit? Circle one.
'NAND NOR AND OR XNOR

2ot

Name: ' Login: ¢cs61c-__

6. Revenge of the AMAT
e Suppose that for 1000 memory references, we have
o 40 misses in direct-mapped L1$ (i.e., the miss rate is 4%)
o 20 misses in 2-way set associative L1$ (i.e., the miss rate is 2%)
o 10 misses in L23% (i.e., the global miss rate is 1%)
¢ Further,
o L1$ hitsin 1 cycle
o L28% hits in 10 cycles
o Miss to main memory costs 100 cycles
e Assume that we have 1.5 memory references per instruction (i.e., 50% loads and
stores). In other words, for 1000 instructions we have 1500 memory references.
e Ideal CPIis 1.0 (if we had a 100% hit rate’in L1$)

a. What is the local miss rate for L23...
i. assuming a direct-mapped L.1$7?

(O /qo = QE%

ii. assuming 2-way set associative L1$7?

(020 = 507
b. What is the AMAT (Average Memory Access Time)
i. assuming a direct-mapped L1$7?

bt Twe -+ [\f\\gs\E@rEuxC Hit T ¢ W\RL’LXMPL)
= | 44, (10425% ¥ (00) = {+49, 35 =14

ii. assuming 2-way set associative L1$7?

= 1 409, |04507x100)= [+

LA

c. How much faster is the AMAT for a 2-way set associative cache? Give your answer as

| _2‘[{ - (;OCH'
AVA

Name: Login: cs61¢c-____

d. What is the average number of memory stall clock cycles per reference
i. assuming a direct-mapped L1$?

. assuming 2-way set associative L1$? . :
= (Ther 22 % (10 L0[30- (00) = 01%% €0 @

C}(a- AN\A:TQ(UA\(“ { = Q\og\—\
e. What is the average number of memory stall clock cycles per instruction

i. assuming a direct-mapped L1$7?
((S * Eiit{o[’{ =

ii. assuming 2-way set associative L1$7?

5 X (:9\?

f. How much faster would a program run using a 2-way set associative cache?

el 3 ey
L« L8 2.8 ‘

g. Are the answers for AMAT (B¢} and program execution time (6f) above the same?
Explain why or why not.

NO, ITVSTRUCTIONS EXEUTE
[5 MFWMORY ReFERENCE S 0N
NIERALE, SO THE DIEESREREE

| 1t S ADDED ¢
(S (ARGER T L

CPL peaL

Name: ' Login: ¢csB1c-____

7. Analyze This
Your task is to determine how to support an instruction set with 32-bit w:de operands using a

16-bit wide datapath, similar to the one you designed for Project #4.

The datapath consists of a register file organized as 8 x 16-bit registers (numbered 0 to 7)
and a 16-bit wide ALU that implements the standard addition and subtraction operations. Like
your project, register 0 is not special, and can be written as well as read. You need only be
concerned with implementing the Register-to-Register operations.

To form 32-bit wide operands, registers are paired. Two registers in an even-odd pair (e.g., 0-1,
2-3, 4-5, 6-7) can store a fuli 32-bit quantity.

‘The following 16-bit wide datapath reads two registers, forms their sum (or other arithmetic
operation)}, and writes back a 16-bit result in one clock cycle: L}
et

Register fields _) —
from instruction Read . ‘

R 'E@- = Rea Regl«:z.o.‘; ReadData 1<15.f}>} lcarfyout, % 7[
R ReadReng:D‘;

T ‘@ Mux

eyt Register
RpT [WriteRegl<2:0»
° T Mux ECS3 File[0:7)
et s RegWr;te ReadData2<15 {32‘*

e _-—-_-—--

%Controi /’\ . Aﬁ@zz - -
. - Clk AT ~5 |

a. By extending the datapath to perform a 32-bit operation over MORE THAN ONE clock _7 J—g
cycle, modify the datapath above with AS FEW PIECES OF ADDITIONAL HARDWARE P
as possible to implement 32-bit computations. Show your changes on the drawing

above.
g«ﬂ)g
- 4
A+ Et-llo - GM/J 't | ki

Zt-16
A 150 +?(3 o

~ “Euﬂ/ mr/‘fj(% dmﬂ% 5~C—/C(
dg0.

Name; Login: cs61c-____

b. The first cycle of the foliowing timing diagram shows a 16-bit register-to-register addition
for the instruction
ADD18 0, 2, 4 (which performs the operation RO <-R2 + R4) .

The next several cycles represent the execution of a 32-bit version of the instruction
ADD32 0, 2, 4 (which performs the operation (R1, RO} <-(R3, R2) + (R5, R4)).

Note that the CarryOut signal is unknown at the start of the cyclé (it will have some value
of course). It becomes a final O or 1 value some delay after the sum of the contents of
R2 and R4 emerge from the adder.

Extend the timing waveforms for the Add32 instruction and add timing waveforms
for any additional signals you need to control the datapath additions you included

above: _ ‘ EJ'L‘L‘

ReadRegl
ReadReg2
WriteReg

WriteData

Carryln

CarryOut

Name: Login: cs61¢c-__

8. One, two, three... SIMD!

a. SIMDize the following code:
void count(int n, float *c) |
for({ int 1 = 0; i < n; i++)
cl[i] = i;
}

Enter your solution by filling in the spaces provided. Assume n is a multiple of 4.
{_mm_set1_ps(x) returns a __m128 with all four elements set to x.)

void countfast(int n, float *c) {
floatma) = __© , _L 2 , 3 -3 ,ﬁor
.. ml28 iterate = mm_loadu ps(m }; ﬁc)r)“'t e
.* for{ int 1 = 0; i < n /Lﬂ ; i++-) { : A*«T AN
Y o 9
1Y : 5 Wy
_mm_storeu ps{ C 41k , iterate);
iterate = _mm_add ps{ iterate, _mm setl ps(L{ yo)s

Y

b.Horner’s rule is an efficient way to find the value of polynomial p(x)=cox™1+Cix™2+.. +Cp.oX+Cp1:
float poly{ int n, flcat *¢, float x)} {
float p = 0;
for(int 1 = 0; i < n; i++)
p=p*x + c[i];
return p;

}

Complete the following SIMD solution by filling in the blanks. Assume n is a multiple of 4.
float fastpoly(int n, float *c, float =) {
_mlz28 p = _mm_setzero ps(}; -
for(int i = 0; 4 < n; 1 += 4 } |

L{ P‘*S p = mumul ps(p, mm setl ps(KX R xR *Y));
/l Pr\- p = mm add ps{ p, mm loadu ps <+))i
' }

4 p*s float m[4] = { RARRR A *R .S Y

p = _monmul ps{ p, mm loadu ps{ m));

_mm_storeu ps(m, p };

i_ P‘\' return W\T,O‘&"‘ V"‘[i'l + VV\L?.} + “\tsl

