
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner MT 2 Solns

Problem 1. (8 points)
Consider the function a(·) defined as follows:

a(0) = 1

a(1) = 2

a(n) = (a(n−1)+2a(n−2)) mod 11 for n ≥ 2

(Corrections to the original version of the exam were made in class.)

(a) Fill in the blanks:

a(2) = 4

a(3) = 8

a(4) = 5

(b) Determine a(2005)—we want a number, not an unevaluated expression—and show how you got your
answer.

Solution #1: One can easily verify by induction that a(n) = 2n mod 11. The answer to part (a) follows.

By Fermat’s Little Theorem, 211−1 ≡ 1 (mod 11). Thus

a(2005) ≡ 22005 ≡ 25 ·22000 ≡ 32 · (210)200 ≡ 32 ·1 ≡ 10 (mod 11)

In short, a(2005) = 10.

Solution #2: One can verify by direct computation that the sequence begins 1,2,4,8,5,10,9,7,3,6,1,2,4,
and so on. We can see that a(10) = a(0) and a(11) = a(1). Since each element in the sequence depends on
only the previous two elements, this means that the sequence is periodic with period 10. In particular, one
can easily verify by strong induction on n that a(n) = a(n mod 10).

It follows that a(2005) = a(2005 mod 10) = a(5) = 10.

Common mistakes: The most common error was failing to justify periodicity properly. For instance, some
people said that since a(10) = a(0), the sequence repeats (this isn’t enough, since each element depends on
the previous two elements). Some only calculated a(0), . . . ,a(9), which isn’t enough to conclude periodicity.
Some tried to use the fact that 2 has an inverse modulo 11 to conclude periodicity; however, this condition
is neither necessary nor sufficient.

Grading: 2 points for concluding that a(n) = 2n mod 11 and filling in the values for n = 2,3,4. 6 points for
applying Fermat’s Little Theorem (or periodicity) correctly.

CS 70, Spring 2005, MT 2 Solns 1

Problem 2. (6 points)
David Wagner has set up n identical dominoes in a line, in preparation for a demonstration of a proof by
induction. Mike Clancy wants to sneak in and grab two dominoes from the line to take home as souvenirs;
however, if he takes two adjacent dominoes, the induction demonstration won’t work.

In how many ways can Mike select a subset of two nonadjacent dominoes from the line of n? Briefly explain
your answer.

Let F(n) = the number of ways to pick two nonadjacent dominoes from n.

Solution #1: Let G(n) = the number of ways to do so that include the leftmost domino in the line, and
H(n) = the number of ways that don’t include the first domino. Then F(n) = G(n) + H(n). There are
G(n) = n− 2 ways to select another domino if the first is chosen. Also H(n) = F(n− 1). This yields the
recurrence relation F(n) = n−2+F(n−1). The base cases for this recurrence are F(2) = F(1) = 0,F(3) =
1, so F(n) = (n−2)+(n−3)+ · · ·+1 = (n−2)(n−1)/2 =

(n−1
2

)

.

Solution #2: F(n) = the number of ways to pick two dominoes (without worrying about adjacency) minus
the number of ways to pick two adjacent dominoes. This is

(n
2

)

− (n−1) =
(n−1

2

)

.

Solution #3: Start with a line of n−2 dominoes. We’ll count the number of ways to add two new dominoes
to the line, subject to the condition that the two new dominoes cannot be adjacent to each other. Since this
is just a time-reversal of the original domino-stealing process, this will give us F(n).

Examine the positions between the n−2 dominoes, including the position before the first domino and after
the last. These positions represent places where the new dominoes could have placed; at most one new
domino can be placed into any one of these positions, since the new dominoes mustn’t be adjacent. There
are n−1 such positions. The number of ways of recreating the line of n dominoes is the number of ways of
selecting two out of these n−1 positions, or

(n−1
2

)

.

Solution #4: Examine the n−1 positions between the dominoes. Mike steals two dominoes, a leftmost one
and a rightmost one. Let’s ask Mike to make a red mark at the in-between position just to the right of his
leftmost stolen domino, and a blue mark at the position just to the left of his rightmost stolen domino. Since
Mike’s stolen dominoes are not adjacent, he won’t mark the same position both red and blue; also, the red
mark is always to the left of the blue mark. Thus, even a totally colorblind person can identify the color of
each mark. Moreover, if you tell me where the two marks are, I can tell which two dominoes Mike stole—
and vice versa. (For any pair of non-adjacent stolen dominoes, we get a pair of marks, possibly adjacent.
For any pair of marks, possibly adjacent, we can identify a pair of non-adjacent dominoes that Mike could
have stolen.)

This means that we have found a bijective correspondence between the set of ways to choose a pair of marks,
and the set of ways to choose a pair of non-adjacent dominoes. There are exactly

(n−1
2

)

ways to choose 2
positions to mark from the set of n−1 positions, so this also counts the number of ways to choose a pair of
non-adjacent dominoes.

Solution #5: Whatever Mike steals, he breaks the line up into three segments of dominoes (interrupted by his
two stolen dominoes). Call the lengths of these three segments (a,b,c). Note that we must have a≥ 0, b≥ 1,
c ≥ 0, and a+b+ c = n−2. Moreover, any triplet (a,b,c) satisfying these constraints uniquely identifies a
way to choose a pair of non-adjacent dominoes. Therefore, there is a bijective correspondence between the
set of non-adjacent domino-pairs and the set S = {(a,b,c) : a ≥ 0,b ≥ 1,c ≥ 0,a + b + c = n−2}. Also, S
can be put into bijective correspondence with the set T = {(a,b′,c) : a ≥ 0,b′ ≥ 0,c ≥ 0,a+b′+c = n−3},
as can be seen by taking b′ = b−1. Finally, by a standard stars-and-bars argument, #T =

(n−3+3−1
3−1

)

=
(n−1

2

)

,

CS 70, Spring 2005, MT 2 Solns 2

so this must be the number of ways to choose a pair of non-adjacent dominoes.

Common mistakes: (1) Forgetting to divide by two, either because of overcounting, or thinking that order
matters. (2) Some tried to break it up into two cases: (a) one of Mike’s two dominoes is an end domino;
(b) both dominoes are from the middle. However, case (b) is quite tricky to count correctly. There are n−3
ways to choose a first middle domino. One would like to say there are n−5 choices for the second middle
domino, but this is not true if the first middle domino was right next to the end (it should be n−4).

Grading: −1 point for a minor arithmetic mistake; −2 points for a significant counting error (e.g., forgetting
to divide by 2); −3 to −6 points for more severe errors.

Problem 3. (6 points)
Let f (n) = n2 +1000n.

(a) True or false: f (n) ∈ O(n3).

(b) Prove that your answer in part (a) is correct.

Solution: The answer to part (a) is true. For a proof, we need a constant c0 and a starting point n0 such
that for all n > n0, we have n2 + 1000n ≤ c0 ·n3. Taking n0 = 1000 and c0 = 2, we find that n2 + 1000n ≤
n2 +n2 ≤ 2n2 ≤ 2n3 ≤ c0 ·n3 for all n ≥ n0.

Common mistakes: This question exposed many misconceptions and bad proof habits.

• Backwards reasoning. Some started by writing down the condition (∃c0,n0. ∀n ≥ n0. f (n) ≤ c0 ·n3),
then manipulating it until you get something true. This is a converse error.

• Informal handwaving. You were supposed to provide a proof. Informal statements like “n3 grows
more quickly than 1000n”, while accurate, need to be justified.

• Use of calculus, limits, or other results about big-Oh, without citing the theorem or result. We asked
you to cite all theorems or results from the book or lectures that you used. While calculus or limits are
useful in informally establishing big-Oh results, they are not ideal for use in a formal proof (unless
you are willing to look up and cite an appropriate theorem), because there are technical restrictions on
when they can be applied. Most who used calculus did not state the general conditions under which
calculus can be applied or check that the technical conditions are satisfied.

• Proofs with no words. A proof is an essay. Any proof has some logical structure, and you usually
need to explain that structure in English. If you don’t include any words, the reader is left to guess at
how the formulas on the page are related to each other. Does one follow from another? A good rule
of thumb: look at the page. If you see more mathematical symbols than words, your proof is probably
lacking.

Grading: (1) Just saying “true”: 1/6 points. (2) Picking an appropriate c0, n0: 2/6 points. (3) Picking an
appropriate c0, n0; checking that f (n0) ≤ c0 · n3

0; and handwaving about the case where n > n0 (or a good
start on proving what happens when n > n0, but ultimately wrong reasoning): 4/6 points. (4) A correct and
rigorous proof: 6/6 points.

CS 70, Spring 2005, MT 2 Solns 3

Problem 4. (8 points)
Prove that 33n+1 +2n+1 is always divisible by 5, for all n ∈ N.

Solution #1: Proof by induction on n. Let F(n) = 33n+1 +2n+1. Base cases: F(0) = 3+2 and F(1) = 81+4,
both of which are divisible by 5.

Induction step: assume F(n) is divisible by 5, and examine F(n+1):

F(n+1) = 33(n+1)+1 +2(n+1)+1

= 33n+4 +2n+2

= 33 ·33n+1 +2 ·2n+1

= 27 ·33n+1 +2 ·2n+1

= 27 ·33n+1 +27 ·2n+1 −25 ·2n+1

= 27F(n)−25 ·2n+1

F(n) is divisible by 5 by the induction hypothesis. Also 25x is divisible by 5 for any integer x. Therefore
the difference, which is F(n+1), is also divisible by 5.

Solution #2: A number is divisible by 5 if and only if it is zero modulo 5. Let n be arbitrary, and calculate:

F(n) ≡ 33n+1 +2n+1 ≡ 3 · (33)n +2 ·2n ≡ 3 ·27n +2 ·2n ≡ 3 ·2n +2 ·2n ≡ 5 ·2n ≡ 0 (mod 5),

using the fact that 27 ≡ 2 (mod 5).

Solution #3: Proof by strong induction on n. Base cases: F(0) = 3 + 2 = 5. F(1) = 81 + 4 = 85. F(2) =
2187+8 = 2195. F(3) = 59049+16 = 59065. All of these are divisible by 5.

Induction step: Assume that n ≥ 4, and that F(n− 4) is divisible by 5. Fermat’s little theorem says that
34 ≡ 1 (mod 5), so 33n+1 ≡ 33(n−4)+1 ·312 ≡ 33(n−4)+1 (mod 5). Likewise, 2n+1 ≡ 2(n−4)+1 (mod 5). This
means that F(n) = 33n+1 + 2n+1 differs from F(n− 4) = 33(n−4)+1 + 2(n−4)+1 by a multiple of 5. Since
F(n−4) is divisible by 5, F(n) must be, too.

Common mistakes: (1) Some tried a few numbers, noticed a pattern emerge, and stopped there. This
question asked for a proof, so noticing an apparent pattern is not enough. (2) Some followed Solution #1
or #2, got as far as the line with 27, and couldn’t make any useful progress from there. (3) Backwards
reasoning.

Grading: (1) Notice a pattern, without explanation (or with bogus reasoning): 2/8 points. (2) Notice a
pattern, and handwave or give an informal explanation: 3/8 points. (3) Get to the line with 27, and get stuck
there: 3/8 points. (4) A correct and rigorous proof: 8/8 points. (5) Also: −1 point for adding “≡ 0 mod 5”
to every line, where it doesn’t belong.

Problem 5. (6 points)
Below is an iterative implementation of a fast exponentiation algorithm.

int exp (int x, int n) {
int m = n;

CS 70, Spring 2005, MT 2 Solns 4

int r = 1;
int z = x;
while (true) {

// ***
boolean isOdd = (m%2 != 0);
m = m/2;
if (isOdd) {
r = z*r;

}
if (m == 0) {
return r;

}
z = z*z;

}
}

There is an invariant that is always true when control reaches the position marked “***”. In particular, there
is a relation xn = f (r,z,m) that holds between x, n, r, z, and m at the start of the loop.

Give an expression for f . (You do not need to justify your answer.)

Solution: The answer is xn = r · zm.

You did not need to justify your answer, but for the curious, this invariant can be verified by induction on
the number of iterations of the loop. Base case: It is true before the first iteration, since then m = n, r = 1,
and z = x, so r · zm = 1 · xn = xn.

Induction step: Let m,r,z denote the values at the start of one iteration of the loop, and m′,r′,z′ denote the
updated values at the end of the loop body. Assume xn = r · zm. We will show that xn = r′ · (z′)m′

.

If m is odd, then m′ = (m−1)/2, r′ = zr, and z′ = z2, so

r′ · (z′)m′
= (zr) · (z2)(m−1)/2 = (zr) · zm−1 = r · zm = xn.

If m is even and positive, then m′ = m/2, r′ = r, and z′ = z2, so

r′ · (z′)m′
= r · (z2)m/2 = r · zm = xn.

Including this invariant as a comment in the code would be a good way to document the algorithm and make
it easier for others to understand how the algorithm works. Also, it is a good way to check that your code
is correct, since we can see that if the invariant holds, then the iteration where m = 0 trivially returns the
correct value xn = r.

Grading: 3 points for something that was close, e.g., xn = (r · z)m or xn = rm · z.

Problem 6. (6 points)
Alice wants to send a RSA-encrypted message M to her friends Bob and Carol. Bob and Carol use public
keys (e1,n) and (e2,n). Notice they use the same modulus, but different exponents. Alice sends C1 = Me1

mod n to Bob, C2 = Me2 mod n to Carol. You eavesdrop on Alice’s transmissions and learn C1 and C2.

CS 70, Spring 2005, MT 2 Solns 5

Show how you can recover M. You may assume that you know e1, e2, and n, and that e1 and e2 are two
different primes.

Solution:
Insight 1: We would like somehow to isolate M with an exponent of 1.

Insight 2: Since e1 and e2 are relatively prime—i.e., their greatest common divisor is 1—there exist a and b
such that a · e1 +b · e2 = 1.

To recover M, we first find a and b using the extended Euclidean algorithm. Then we calculate Ca
1 ×

Cb
2 mod n. Note that

Ca
1 ×Cb

2 ≡ (Me1)a × (Me2)b ≡ Ma·e1+b·e2 ≡ M1 ≡ M (mod n),

so this reveals the message.

Note that every step above can be performed efficiently. We use the extended Euclidean algorithm, fast
exponentiation algorithm, and algorithms for modular arithmetic, which all run in polynomial time.

Intuition: How could you have discovered this answer? Here is one possible thought process.

Suppose you are given C1 = M3 mod n, C2 = M2 mod n. Since 3 = 2 + 1, you could calculate M as M ≡
C1 · (C2)

−1 ≡ M3 ·M−2 (mod n).

Suppose you are given C1 = M5 mod n, C2 = M3 mod n. Since 5 = 3 + 2, you could calculate M2 mod n
as M2 ≡ C1 · (C2)

−1 ≡ M5 ·M−2 (mod n). Now you know M2 mod n and M3 mod n. and then you could
apply the method of the previous paragraph to deduce M.

Suppose you are given C1 = M103 mod n, C2 = M5 mod n. Since 103 = 20 · 5 + 3, you could calculate
M3 mod n as M3 ≡ C1 · (C20

2)−1 ≡ M103 ·M−100 (mod n). At this point, you have reduced the problem to
that of the previous paragraph.

Finally, suppose you are given C1 = Me1 mod n and C2 = Me2 mod n with e1 > e2. Compute a = be1/e2c
and e3 = e1 mod e2. Since e1 = a · e2 + e3, you can calculate Me3 mod n as Me3 ≡ C1 · (Ca

2)
−1 ≡ Ma·e2+e3 ·

M−a·e2 (mod n). Then, you can recursively solve the problem with exponents e2 and e3. Since 0 < e3 <
e2 and gcd(e1,e2) = 1, this process must eventually terminate with some ek = 1, and then you know M.
The sequence of exponents e1,e2,e3, . . . ,ek = 1 visited during this process mimics exactly the sequence of
intermedate results computed by the extended Euclidean algorithm.

Grading: Hardly anyone got this problem. We gave 1 point for anyone who found a correct, exponential-
time algorithm, or who found an equation of the form M = (something) where the (something) contains
values you don’t have (e.g., p, q, d1, d2, ϕ(n)).

CS 70, Spring 2005, MT 2 Solns 6

