
EE 126 Fall 2007 Midterm #2

Thursday November 15, 3:30–5pm

DO NOT TURN THIS PAGE OVER UNTIL YOU
ARE TOLD TO DO SO

• You have 90 minutes to complete the quiz.

• Write your solutions in the exam booklet. We will not consider any work not in the
exam booklet.

• This quiz has three problems that are in no particular order of difficulty.

• You may give an answer in the form of an arithmetic expression (sums, products, ratios,
factorials) of numbers that could be evaluated using a calculator. Expressions like

(
8
3

)

or
∑5

k=0(1/2)
k are also fine.

• A correct answer does not guarantee full credit and a wrong answer does not guarantee
loss of credit. You should concisely indicate your reasoning and show all relevant work.
The grade on each problem is based on our judgment of your level of understanding as
reflected by what you have written.

• This is a closed-book exam except for one single-sided, handwritten, 8.5 × 11 formula
sheet plus a calculator.

• Be neat! If we can’t read it, we can’t grade it.

• At the end of the quiz, turn in your solutions along with this quiz (this piece of paper).

Problem Score

1 [16 points]

2 [13 points]

3 [11 points]

Total



Problem 1: 16 points

A fly lays T eggs, where T has a Poisson distribution with parameter λ > 0. The weight
of each egg follows an exponential distribution with parameter µ > 0, independently of any
other egg. Let W denote the total weight of the eggs that are laid.

(Remember: The Poisson with parameter λ has mean λ and variance λ; the exponential
has mean 1/µ and variance 1/µ2.)

(a) (3 pts) Suppose that you observe that T = t eggs are laid. Compute the mean and variance of
W conditioned on {T = t}.

(b) (3 pts) Compute the expectation of W conditioned on {T ≤ 3}.

(c) (3 pts) Compute the moment generating function of W . (For this part, nothing about T is
observed.)

Now suppose that any egg with weight less than µ does not hatch, whereas any egg with
weight greater than or equal to µ hatches with probability p, independently of any other egg.

(d) (4 pts) Compute the probability h that any given egg hatches. Letting F denote the total
number of fly eggs that hatch, compute the expectation and variance of F , as well as
the covariance cov(F, T ).

(e) (3 pts) Let V be the total weight of the eggs that hatched. Compute the expectation of V .

Solution 1:

(a) Conditioned on T = t, the total weight is given by the (non-random) sum
∑t

i=1 Vi,
where the Vi are i.i.d., each exponential with parameter µ. By linearity of expectation
and the i.i.d. nature, we have

E[

t∑

i=1

Vi] = t E[Vi] = t/µ,

and by the i.i.d. nature, we have

var(

t∑

i=1

Vi) = t var(Vi) = t/µ2.
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(b) By the conditional form of total expectation, we have

E[W | T ≤ 3] =

3∑

t=0

P[T = t | T ≤ 3]E[W | T = t, T ≤ 3]

=

3∑

t=1

P[T = t]

P[T ≤ 3]
E[W | T = t]

=

3∑

t=1

λt exp(−λ)/t!
∑3

k=0 λk exp(−λ)/k!

t

µ

=
3∑

t=1

λt/t!
∑3

k=0 λk/k!

t

µ
.

(Note: Many students used the weights P[T = t] instead of the correct ones P[T = t | T ≤ 3]
in this problem.)

(c) By conditional expectation and i.i.d. nature of the {Vi}, we have

MW (s) = E[E[exp(sW ) | T = t]] =

∞∑

t=0

PT (T = t) (E[exp(sV1)])
t

Using the form of the MGF for exponential RVs, we have

MW (s) =

∞∑

t=0

λt exp(−λ)

t!

(
µ

µ − s

)t

=

∞∑

t=0

λt exp(−λ)

t!

(
µ

µ − s

)t

= exp

(
−λ +

λµ

µ − s

)
,

valid for s < µ.

(d) By conditioning, the probability h that any given egg hatches is

h = pP[Ei ≥ µ]

= p

∫ ∞

µ

µ exp(−µx)dx

= p exp(−µ2).

Conditioned on T = t, the number of eggs that hatch is binomial with probability h,
so that E[F |T ] = hT . Applying iterated expectation then yields

E[F ] = E[E[F |T ]] = E[hT ] = λh,

and
var(F ) = h(1 − h)λ + h2λ = hλ.
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Finally, we have E[T ]E[F ] = λ2h, and

E[TF ] = E[TE[F | T ]] = E[hT 2] = h(λ + λ2).

Thus cov(F, T ) = h(λ + λ2) − λ2h = hλ.

(e) Conditioned on T = t, the total weight V of hatched eggs is a sum of a binomial
Bin(t, h) number of random weights. Each random weight has the distribution of the
random variable {Vi | Vi ≥ µ}; by the memoryless property of the exponential, this
is the same as µ + V ′

i , where V ′
i is an independent exponential. Again, by iterated

expectation, we have

E[V ] = E[E[V | |T = t]]

= E[ThE[µ + V ′
i ]]

= h
{
E[T ]

(
µ + E[V ′

i ]
)}

= h {λµ + λ/µ} .
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Problem 2: 13 points

An edge detector is applied in order to detect edges in an image. Conditioned on an
edge being present at some position, the detector response is Gaussian with mean 0 and
variance σ2, whereas conditioned on no edge being present, the detector response is zero-
mean Gaussian with variance 1. Any position in the image has a probability p of containing
an edge.

(a) (3 pts) Compute the mean and variance of the detector response X.

(b) (3 pts) Compute the conditional probability of an edge being present given that |X| > 10.
Your answer should be expressed in terms of p, σ, and the standard Gaussian CDF
Φ(t) = 1√

2π

∫ t

−∞ exp(−t2/2)dt.

Now suppose that you observe a noise-corrupted version Y = X+W , where W ∼ N(0, 1)
is Gaussian noise, independent of X.

(c) (3 pts) Compute the linear least-squares estimate (LLSE) of X based on Y , as well as the
mean-squared error of this estimate.

(d) (4 pts) Compute the optimal least-squares estimator of X based on Y . What happens to this
optimal estimator in comparison to the linear estimator from (c) as p → 1?

Solution 2:

(a) We condition on the presence/absence of the edge, an event denoted by G. We have
E[X] = pE[X | G] + (1 − p)E[X|Gc] = 0, and

var(X2) = E[X2] = pE[X2 | G] + (1 − p)E[X2 | Gc]

= pσ2 + (1 − p).

Note that X is not a Gaussian variable—rather, it is a mixture of two Gaussians with
different variances.

(b) By Bayes rule, we have

P[G | |X| ≥ 10] =
p P[|X| ≥ 10 | G]

pP[|X| ≥ 10 | G] + (1 − p)P[|X| ≥ 10 | Gc]

=
p P[|Z| ≥ 10/σ]

pP[|Z| ≥ 10/σ] + (1 − p)P[|Z| ≥ 1]

where Z ∼ N(0, 1) is a standard normal variate. Hence we have

P[G | |X| ≥ 10] =
p (2Φ(−10/σ))

p (2Φ(−10/σ)) + (1 − p) (2Φ(−10))

where we applied symmetry to reduce P[|Z| ≥ 10/σ] = 1 − (Φ(10/σ) − Φ(−10/σ)) =
2Φ(−10/σ).
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(c) We compute E[X] = E[Y ] = 0, and

var(Y ) = var(X) + var(W ) = pσ2 + (1 − p) + 1 = pσ2 + 2 − p.

Also, we have

cov(X,Y ) = cov(X,X + W ) = var(X) = pσ2 + (1 − p),

using the fact that cov(X,W ) = 0 by independence of X and W . Thus, the LLSE of
X based on Y = y is

X̂(y) =
pσ2 + (1 − p)

pσ2 + 2 − p
y.

The variance of the LLSE is given by

(1 − ρ2) var(X) =

(
1 −

cov2(X,Y )

var(X) var(Y )

)
var(X)

= pσ2 + (1 − p) −
(pσ2 + (1 − p))2

pσ2 + 2 − p
.

(d) Note that (X,Y ) are not jointly Gaussian, since X is not even marginally Gaussian
(from (a), it is a mixture of Gaussians). The question is asking us compute the condi-
tional expectation E[X|Y ]. In order to do so, we condition on the presence/absence of
an edge, writing

E[X | Y = y] = P[G | Y = y]E[X | Y = y,G] + P[Gc | Y = y]E[X | Y = y,Gc].(1)

The key to this decomposition is that conditioned on G, the pair (X,Y |G) are jointly
Gaussian, and similarly for conditioning on Gc. Therefore, from results on jointly
Gaussian varaites, we know that (X | Y = y,G) and (X | Y = y,Gc) are Gaussian with
means

E[X | Y = y,G] =
σ2

σ2 + 1
y, and E[X | Y = y,Gc] =

1

2
y.

It remains to compute the weights P[G | Y = y] in our expression (1) for the optimal
estimator. By Bayes’ rule, we have

P[G | Y = y] =
pfY |G(y | G)

pfY |G(y | G) + (1 − p)fY |Gc(y | Gc)

=

p√
2πσ2

exp(−y2/2σ2)

p√
2πσ2

exp(−y2/2σ2) + 1−p√
2π

exp(−y2/2)
.

and P[Gc|Y = y] = 1 − P[Gc|Y = y]. As p → 1, this BLSE becomes equivalent to the
LLSE from (c).
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Problem 3: 11 pts

The random variables X and Y are independent, and each is uniformly distributed on
the interval [0, a] for some fixed a > 0.

(a) (6 pts) Compute the CDFs and PDFs of the new random variables:

(i) U = min{X,Y }.

(ii) W = a − max{X,Y }.

(b) (3 pts) A stick of length a is bent at a point X chosen uniformly along its length to form a
right angle; the base of the resulting triangle has length X (uniform on [0, a] as in part
(a)). Suppose that this procedure is repeated independently for two different sticks.
Compute the expected area of the triangle with the smallest base.
Hint: The area of a right triangle is equal to one half the base length times the height.
Your answer to part (a) could be helpful here.

(c) (2 pts) Let O be the center of a circle of radius r, and consider the inscribed triangle △ABC:
it is completely specified by any two of the three angles ∠AOB, ∠BOC and ∠AOC, as
illustrated in the figure. (Given two angles, the third angle is specified since all three
have to sum to 2π radians.)

Suppose that we generate a random triangle △ABC by choosing two angles indepen-
dently and uniformly at random from the interval [0, 2π]. Let the random variable Θ1

be the larger of the two angles and let Θ2 the smaller of the two angles. Compute the
joint distribution of (Θ1,Θ2). Use it to show that the expected area of triangle △ABC
is 3r2/(2π).

Hint: The area of subtriangle △AOB is r2

2 sin(∠AOB), with similar formulas for the
other subtriangles. Do not try this problem until you have completed the rest of the
exam.

Solution 3:
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(a) For a ∈ [0, u], we have (using independence)

1 − FU (u) = P[X ≥ u]P[Y ≥ u] =
(a − u)2

a2
.

Moreover FU (u) = 0 for u ≤ 0 and FU (u) = 1 for u ≥ a. and by differentiating,
fU (u) = 2(a − u)/a2 for u ∈ [0, a], and 0 otherwise.

Similarly, for w ∈ [0, a], we have

FW (w) = P[r − max{X,Y } ≤ w] = 1 − P[max{X,Y } ≤ a − w] = 1 −
(a − w)2

a2
.

Differentiating yields fW (w) = 2(a − w)/a2 for w ∈ [0, a], and 0 otherwise.

(b) The area T of the specified triangle is given by T = 1
2U (a−U), where U = min{X,Y }.

Using the form of the density fU computed in (a), we have

E[T ] =

∫ a

0

u(a − u)2

a2
du

= a2

{
1

2
−

2

3
+

1

4

}

=
a2

12
,

by expanding the square, and performing the integration.

(c) Since the three angles must be non-negative and sum to 2π, we model them as (Θ1,Θ2−
Θ1, 2π − Θ2) The joint PDF of Θ1 and Θ2 is

fΘ1,Θ2
(θ1, θ2) =

{
2

(2π)2
if 0 ≤ θ1 ≤ θ2 ≤ 2π

0 otherwise

Let S△ABC denote the area of triangle ABC. We decompose this area into sums/differences
of the areas of the subtriangles △AOC, △AOB and △BOC, associated with the angles
Θ1, Θ2 − Θ1 and 2π − Θ2 respectively. We first claim from the hint on triangle areas,
we always have S△ABC = r2

2 sin(Θ1)+
r2

2 sin(Θ2−Θ1)−
r2

2 sin(Θ2). To see this, suppose
first that all three of (Θ1,Θ2 − Θ1, 2π − Θ2) lie within [0, π] as shown in the diagram,
then

S△ABC = S△AOC + S△AOB + S△BOC

=
r2

2
sin(Θ1) +

r2

2
sin(Θ2 − Θ1) +

r2

2
sin(2π − Θ2)

=
r2

2
sin(Θ1) +

r2

2
sin(Θ2 − Θ1) −

r2

2
sin(Θ2).

Otherwise, if 2π − Θ2 ≥ π, then we have

S△ABC = S△AOC + S△AOB − S△BOC =
r2

2
sin(Θ1) +

r2

2
sin(Θ2 − Θ1) −

r2

2
sin(Θ2)
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The remaining cases (e.g., Θ1 ≤ π,Θ2 − Θ1 ≥ π) etc. are verified similarly. Thus,
expected area of the triangle is

2

(2π)2
×

r2

2

∫ 2π

0

{ ∫ 2π

θ1

[
sin θ1 + sin(θ2 − θ1) + − sin(θ2)

]
dθ2

}
dθ1 =

3r2

2π
.
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